
HOMEWORK 14

Due date: Monday of Week 15,
Exercises: 2.1, 2.2, 2.3, 2.7, 2.13, 2.14, 2.17, 2.18, 3.2, 3.3, 5.5, 5.7, 5.11, 5.12, 6.1, 6.2, 6.4, 6.5 pages
221-223.

Problem 1. Let G be a finite group with |G| = n. Let ι : G → Sn be the embedding in Cayley’s
theorem (namely, ι : G → Perm(G) is determined by the left multiplication action G × G → G,
(g, x) 7→ gx).

(1) Let h ∈ G be an element of order d (so that d|n). Show that ι(h) is a product of n/d disjoint
cycles of length d.

(2) Suppose n = 4m+ 2. Show that ι(h) ∈ An if and only if the order of h is odd.

Hint: Let H = 〈h〉 ⊂ G and consider the right coset decomposition G =
∐
Hgi. For (2), see Ex.

10.1, page 74. This problem was taken from a Quora answer here.

Problem 2. Let C be a conjugacy class of Sn. Decompose C ∩An as conjugacy classes of An.

This is roughly Ex.5.11. For future references, here is a more precise statement. Suppose that
σ ∈ Sn has cycle lengths k1, . . . , km with k1 + · · ·+ km = 1. This means that σ can be written as a
product of m disjoint cycles of lengths k1, . . . , km. For example, for σ = (123)(45)(6) ∈ S6, we have
m = 3, k1 = 3, k2 = 2, k3 = 1. Using this notation, we have sign(σ) = (−1)k1−1+k2−1+···+km−1 =
(−1)n−m. Thus σ is an even permutation (namely, σ ∈ An) if and only if n−m is even. For example,
(123)(45)(6) ∈ S6 has signature −1. This is Ex 10.1, page 74. Now suppose that n−m is even and
so that σ ∈ An. We consider the Sn conjugacy class C(σ) =

{
gσg−1 : g ∈ Sn

}
.

Problem 3. (1) If all ki are odd and distinct, then C(σ) is the union of two An conjugacy
classes and these two conjugacy classes have the same order.

(2) Otherwise (which means, either one of ki is even, or there are at least two ki are the same),
then C(σ) is still a single An-conjugacy class.

For example, in S4, if σ = (12)(34), then C(σ) is a single A4 conjugacy class; if σ = (123)(4),
then C(σ) is the union of two different A4 conjugacy classes. Actually, one can see that (123) and
(132) are not conjugate in A4.

Problem 4. Given an element p ∈ Sn with m1 1-cycles, . . . , mn n-cycles. So
∑n

i=1 imi = n. For
example, for the cycle p = (123)(45)(67)(89) of S10, we have m1 = 1,m2 = 3,m3 = 1 and mi = 0
for i ≥ 4. Determine how many elements are in the conjugacy class determined by p.

Answer:

|C| = n!

1m1m1!2m2m2! . . . nmnmn!
=

n!∏n
i=1 i

mimi!
.

For example, in S5, the conjugacy class contains (12)(345) has 5!
21·1!·31·1! = 20 elements, and the

conjugacy class contains (12345) has 5!
51 = 4! = 24 elements.

Problem 5. Let G be a finite group, H be a subgroup of G. Let C ⊂ G be a conjugacy class and
suppose

H ∩ C =

r∐
i=1

Di,

where each Di is a conjugacy class of H. Consider the set

Xi =
{

(c, g) ∈ C ×G : g−1cg ∈ Di

}
.

Express |Xi| in terms of |G|, |H|, |Di|.
1
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Hint: Consider the group action G×Xi → Xi defined by x.(c, g) = (xcx−1, xg).

Problem 6. Let G = D4 =
{

1, x, x2, x3, y, xy, x2y, x3y
}

with x4 = 1 = y2, yxy−1 = x3 and

H =
{

1, x2, y, x2y
}
⊂ G. Find all conjugacy classes C of G, and for each conjugacy class C of G,

decompose C ∩H into conjugacy classes of H.

Problem 7. Let G = GL2(Fp), H = SL2(Fp) = {g ∈ G : det(g) = 1}. Let C ⊂ G be the conjugacy

class of the element u =

(
1 1
0 1

)
. Namely,

C =
{
gug−1 : g ∈ G

}
.

Try to decompose C ∩H into conjugacy classes of H.

Problem 8. Let p be a prime number. Show that the cyclic group Cpn for n ≥ 2 is not a semi-direct
product of two proper subgroups.

Proposition 7.3.3, page 198, says that every group of order p2 is abelian. In the following, we give
some examples of non-abelian group of order p3. We assume that p > 2. If p = 2, we have seen that
the quaternion group is an order 2 non-abelian group.

The first one is called Heisenberg group of the field Fp, and we temporarily denote it by H(F2
p).

(This looks like a wired notation, but it has generalizations). It is defined by

H(F2
p) =


1 x z

1 y
1

 ∈ GL3(Fp), x, y, z ∈ Fp

 .

Its group structure is defined by matrix multiplication. The other group is temporarily denoted by
Gp and it is defined by

Gp =

{[
x y

1

]
∈ GL2(Z/p2Z) : x ≡ 1 mod p, y ∈ Z/p2Z

}
.

Problem 9. Show that H(F2
p) and Gp are non-abelian group of order p3. Moreover, show that they

are indeed semidirect products of their own subgroups.

It can be shown that these are the only two non-abelian groups of order p3 up to isomorphism.

Problem 10. Determine the class equations of Dn, n ≥ 3, GL2(Fp),SL2(Fp) and PSL2(Fp), where
PSL2(Fp) = SL2(Fp)/ {±I2}.

If you find this hard, at least try some examples for small p.

Problem 11. Let G be a finite group and let p be the smallest prime that divides |G|.
(1) If H is a normal subgroup of G such that |H| = p, show that H < Z(G).
(2) If H < G is a subgroup such that [G : H] = p, then H is a normal subgroup of G.

Part (1) is Ex 6.4 page 223. and part (2) generalizes Ex.8.10, page 73. These two parts are
somehow dual to each other.


